Rigorous Computation of the Endomorphism Ring of a Jacobian

نویسنده

  • EDGAR COSTA
چکیده

We describe several improvements to algorithms for the rigorous computation of the endomorphism ring of the Jacobian of a curve defined over a number field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing endomorphism rings of Jacobians of genus 2 curves over finite fields

We present algorithms which, given a genus 2 curve C defined over a finite field and a quartic CM field K, determine whether the endomorphism ring of the Jacobian J of C is the full ring of integers in K. In particular, we present probabilistic algorithms for computing the field of definition of, and the action of Frobenius on, the subgroups J [l] for prime powers l. We use these algorithms to ...

متن کامل

Pairing-based algorithms for jacobians of genus 2 curves with maximal endomorphism ring

Using Galois cohomology, Schmoyer characterizes cryptographic non-trivial self-pairings of the `-Tate pairing in terms of the action of the Frobenius on the `-torsion of the Jacobian of a genus 2 curve. We apply similar techniques to study the non-degeneracy of the `-Tate pairing restrained to subgroups of the `-torsion which are maximal isotropic with respect to the Weil pairing. First, we ded...

متن کامل

Pairings on Jacobians of Hyperelliptic Curves

Consider the Jacobian of a hyperelliptic genus two curve de ned over a nite eld. Under certain restrictions on the endomorphism ring of the Jacobian, we give an explicit description of all non-degenerate, bilinear, anti-symmetric and Galois-invariant pairings on the Jacobian. From this description it follows that no such pairing can be computed more e ciently than the Weil pairing. To establish...

متن کامل

Diffie-Hellman type key exchange protocols based on isogenies

‎In this paper‎, ‎we propose some Diffie-Hellman type key exchange protocols using isogenies of elliptic curves‎. ‎The first method which uses the endomorphism ring of an ordinary elliptic curve $ E $‎, ‎is a straightforward generalization of elliptic curve Diffie-Hellman key exchange‎. ‎The method uses commutativity of the endomorphism ring $ End(E) $‎. ‎Then using dual isogenies‎, ‎we propose...

متن کامل

Computation of the Maximal Degree of the Inverse of a Cubic Automorphism of the Affine Plane with Jacobian 1 via Gröbner Bases

If k is any commutative ring, k[X,Y ] will denote the algebra of polynomials with coefficients in k in the indeterminates X,Y and Ak = Spec k[X,Y ] the affine plane over k. A kendomorphism f of Ak will be identified with its coordinate functions f = (f1, f2), where fi (i = 1, 2) belongs to k[X,Y ]. We define the Jacobian of f by Jac(f) = ∂f1 ∂X ∂f2 ∂Y − ∂f1 ∂Y ∂f2 ∂X and the degree of f by deg(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017